
Int. J. Metrol. Qual. Eng. 4, 153–162 (2013)
c© EDP Sciences 2014
DOI: 10.1051/ijmqe/2013056
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Abstract. Classic methodologies of DOE are widely applied in design, manufacture, quality management
and related fields. The resulting data can be analysed with linear modeling methods such as multiple
regression which generates a set of equations, Y = F (X), that enable us to understand how varying
the mean of one or more inputs changes the mean of one of more responses. To develop, scale-up and
transfer robust processes to manufacturing we also need to set the control tolerances of each critical X
and understand the extent to which variation in the critical X’s propagate through to variation in the
Y ’s and how this may impact performance relative to requirements (or specifications). Visual tolerance
analysis provides a simple way to understand and reduce propagation of variation from X’s to Y ’s using
models developed from DOE’s or historical data. This paper briefly introduces the concept of tolerance
analysis and extents this to visual tolerance analysis through defect profiles and defect parametric profiles.
With the help of visual tolerance analysis, engineering and statistical analysts can work together to find
the key factors responsible for propagating undesired variation into responses and how to reduce these
effects to deliver a robust and cost effective process. A case study approach is used to aid explanation and
understanding.
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1 Introduction

With the help of screening DOE’s, such as fractional or
full factorials, D-optimal, or similar designs we can screen
out the critical few factors by modeling main (and possi-
bly interaction) effects. RSM designs then allow us to fine
tune our model and predict the settings of the key factors
required to optimize the mean of our responses.

Some DOE approaches such as Taguchi methods try to
optimize response for mean and variance to deliver robust
processes. Because they cross an inner array design in the
control factors with an outer array design in the noise
factors the total size of the design gets large very quickly
and the inner array design tends to be limited to fractional
factorial type designs which limit us to modeling linear
effects which are not so useful when we need to explore
wider factor ranges. The approach presented here requires
significantly fewer total runs than Taguchi experiments
(because it does not require the crossing of an inner array
with an outer array) and delivers more information about
how to optimize processes for robustness because it allows
the modeling of more than main effects.
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2 Propagation of error

Conventional DOE and modeling methods help design and
develop new products and processes and transfer them to
production. As part of the transfer process it is often dif-
ficult to gain an understanding of how consistently the
product or process will perform under actual use or man-
ufacturing conditions. Figure 1 illustrates this dilemma.
The graph on the left-hand side exemplifies development
conditions where it is possible to control process inputs
with little or no variation resulting in little or no run-to-
run variation being transferred into the Y ’s when control-
ling the X ’s at their optimum settings. The real use case
or manufacturing situation is illustrated in the right-hand
graph where there is a certain amount of uncontrolled vari-
ation in the X ’s that gets transmitted to the Y ’s. Unfor-
tunately, when mass production starts, we often find the
variation is much bigger than expected. The actual pro-
cess capability is lower than predicted from R&D trials,
which results in additional engineering investigations and
learning during manufacturing to incrementally improve
capability.

The principle causes of this batch to batch variation
are many and include uncontrollable batch to batch vari-
ation in critical X ’s about their optimum settings and
random batch to batch variation (which may include
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Fig. 1. Example of process capability.

Fig. 2. General model of engineering process.

Table 1. Terms definition.

Terms Definition

σ2
Y Variance of output variable Y

σ2
Xn

Variance of input variable Xn(
∂f

∂Xn

)
Sensitivity coefficient of input variable Xn

(
σf

σXn

)
σ2

Xn

Contribution of input variable Xn

to the variance of output variable

contributions from unidentified critical X ’s). Figure 2
represents the transfer function from X ’s (factors) to Y ’s
(responses) with the transfer function Y = F (X) being
approximated by linear modeling methods such as multi-
ple regression.

Regression methods are used to model the way chang-
ing the mean of one or more X ’s changes the mean of
each Y . Such analysis may not adequately deal with the
situation when it is not possible to control exactly the crit-
ical X ’s. The uncontrollable variation in the critical X ’s
may get propagated through to Y as defined by equa-
tion (1) and Table 1.

σ2
Y =

(
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∂X1

)2

σ2
X1

+ . . . +
(

∂f

∂Xn

)2

σ2
Xn

. (1)

3 Tolerance analysis

Tolerance analysis is an approach to model propagation
of errors, and helps define cost effective control tolerances
(not just target settings) of the critical input variables
during R&D phases, to ensure that our responses are in-
sensitive to variability of input variables, so that it can
remain within customer requirement or engineering spec-
ification in production. The emphasis needs to be on cost

Table 2. Response specification.

Response LSL USL
Abrasion 100 200
Elasticity 2000
Elongation 400 550
Hardness 65 75

Table 3. Factor tolerances.

Factor LL UL
Silica 0.95 1.55
Silane 44 56
Sulfur 1.8 2.7

effective control tolerances for the critical X ’s and not the
definition of unreasonably tight tolerances that would be
costly to maintain in production, i.e. what’s the biggest
control tolerance the process can sustain while transfer-
ring acceptable levels of variation into responses relative
to specifications.

Competition and higher awareness of methods for
quality improvement have driven the study and applica-
tion of advanced techniques such as tolerance analysis. Vi-
sual tolerance analysis is one variant that exploits a wide
range of different visual forms, such as graphs and pro-
filers with animation controls to aid understanding and
communication of propagation of variance. Developing in-
formation technology is simplifying the application of vi-
sual tolerance analysis, making it easier for engineering
groups to reach more informed decisions about process
tolerances and controls.

4 Case study

The following case study will demonstrate the application
of visual tolerance analysis in engineering optimization.

4.1 Background

Visual tolerance analysis will be illustrated with data from
Derringer and Suich [1]. There are four output responses
as described in Table 2.

Earlier work established three critical factors with ex-
perimental ranges described in Table 3: (LL: Lower Limit,
UL: Upper Limit)

Using the factor ranges in Table 3, a 20 run response
surface design was conducted, the results of which are pre-
sented in Table 4.

4.2 Monte Carlo simulation process

After estimation and selection of a “best” regression model
by standard least square method, the desirability function
based on the requirements defined in Table 2 were used
to optimize the process for average performance and gave
the suggested factor settings of Silica = 0.99, Silane = 52,
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Table 4. Experiment schedule & result.

�����
Abrasion Elasticity Elongation Hardness Silica Silane Sulfur

1 102 900 470 67.5 0.7 40 2.8

2 120 860 410 65 1.7 40 1.8

3 117 800 570 77.5 0.7 60 1.8

4 198 2294 240 74.5 1.7 60 2.8

5 103 490 640 62.5 0.7 40 1.8

6 132 1289 270 67 1.7 40 2.8

7 132 1270 410 78 0.7 60 2.8

8 139 1090 380 70 1.7 60 1.8

9 102 770 590 76 0.3835 50 2.3

10 154 1690 260 70 2.0165 50 2.3

11 96 700 520 63 1.2 33.67 2.3

12 163 1540 380 75 1.2 66.33 2.3

13 116 2184 520 65 1.2 50 1.4835

14 153 1784 290 71 1.2 50 3.1165

15 133 1300 380 70 1.2 50 2.3

16 133 1300 380 68.5 1.2 50 2.3

17 140 1145 430 68 1.2 50 2.3

18 142 1090 430 68 1.2 50 2.3

19 145 1260 390 69 1.2 50 2.3

20 142 1344 390 70 1.2 50 2.3

and Sulfur = 2.1. As indicated in Figure 3 our predicted
average responses of 131 for Abrasion, 1164 for Elasticity,
469 for elongation and 70 for hardness compare well with
the requirements specified in Table 2.

With this model, Monte Carlo simulation can be used
to assess the extent to which variation in inputs propa-
gates through to variation in the outputs. For example dis-
cussions with engineers responsible for the process might
suggest control tolerances for each of the three factors with
a normal distribution about the targets defined in Figure 3
with standard deviations of 0.2, 4, and 0.2 respectively. A
Monte Carlo simulation then randomly selects a value for
each input factor from its proposed control distribution
substitutes these values into the multiple regression model
to give a predicted value for each of the four responses to
which random error is added to represent the uncontrolled
variation (estimated by the variation in the residuals from
the regression model which represents variation due to un-
controllable factors or factors yet to be identified). For
each response the random error is simulated from a normal
distribution with a mean of zero and a standard deviation
estimated from the residuals of the regression model. Run-
ning a large number of such simulations (in our case 5000)
gives us an estimate of the defect rate (out of specifica-
tion rate) for each response and the overall defect rate
where one or more responses are out of specification. Fig-
ure 4 shows the results of 5000 Monte Carlo simulations
for the above scenario and predicts an overall defect rate
of 27.38%.

After applying the proposed control tolerances for the
three critical factors and uncontrolled variation in each

response, we get a very different view of the process. While
on average we obtain good performance, in the long-term
operation of the process we expect one or more of the re-
sponses to be out of specification 26% of the time. Using a
process of trial and error we could change the mean and/or
standard deviation of each the input distributions to try
and find alternative solutions that give a lower overall de-
fect rate. However this process of trial and error gets more
time consuming and error prone as the number of factors
and responses increase.

Two concepts of the JMP statistical discovery soft-
ware – the defect profile and defect parametric profile –
are used instead to provide objective functions to mini-
mize the overall defect rate. The defect profiler illustrated
in Figure 5 shows the defect rate as an isolated function
of each factor. It graphs the overall defect rate (cubic root
scale) for each response. The curves with different colors,
e.g. red and blue (which is not available in the printed
version), represent the relationship between the factor set-
ting and defect rate relative to different specifications for
each response, e.g. lower specification in red for the re-
sponse and upper specification in blue for the response.
The black curve represents the overall defect rate for the
response. The value of the factor that minimises the over-
all defect rate for a particular factor is indicated at the
turning point.

This graph shows the defect rate as a function of each
factor as if it were held constant, but all the other factors
are varied according to their random specification. If there
are multiple outputs with Spec Limits, then there is a
defect rate curve color-coded for each output and a black
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Prediction Profiler 

Fig. 3. Solution with maximum desirability.

curve shows the overall defect rate – this curve is above
all the colored curves (as illustrated in Fig. 7).

Reported below each defect profile plot is the mean
and standard deviation (SD). The mean is the overall de-
fect rate, calculated by integrating the defect profile curve
with the specified factor distribution. The standard de-
viation is a good measure of the sensitivity of the defect
rates to the factor. It is quite small if either the factor
profile is flat, or the factor distribution has a very small
variance. Comparing SD’s across factors is a good way to
know which factor should get more attention to reducing
variation.

Secondly, the defect parametric profile shown in Fig-
ure 6, shows how single changes in the factor distribution
parameters affect the defect rate. We now have four curves
with different colors (which is not available in the printed
version) representing the effects of four different control
strategies around the factor:
– mean Shift represents the change in overall defect rate

by changing the mean of the factor;
– Std. Narrow represents the change in defect rate by

reducing the standard deviation of the factor;

– LSL Chop, represents the change in defect rate by re-
jecting any values of the factor below the LSL through
inspection;

– USL Chop, represents the change in defect rate by re-
jecting any values of the factor above the USL through
inspection.

In addition, the red (which is not available in the printed
version) dotted line represents the value of current mean
of processing factor, while the two blue (which is not avail-
able in the printed version) dotted lines represent the value
which equals current mean of processing factor plus or
minus one current standard deviation respectively. The
curve with the lowest minimum defect indicates the con-
trol strategy for the factor that results is biggest reduc-
tion in defect rate. In the case illustrated in Figure 6, the
blue (which is not available in the printed version) curve
corresponds to the lowest minimum defect rate, which in-
dicates we can get biggest reduction in overall defect rate
by reducing the standard deviation of the factor. This op-
portunity could now be explored to assess the cost benefit
of this change.
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Prediction Profiler

Fig. 4. Simulated defect rate for starting scenario.

Fig. 5. Example of defect profile.

Examining the defect parametric profiler for our situ-
ation we see that reducing the standard deviation of silica
will have the greatest impact on defect rate. Indeed, if we

Fig. 6. Example of defect parametric profile.

could reduce the standard deviation to close to zero we
would expect the overall defect rate to be close to 0.1 or
10%.
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Defect Parametric Profile 

Detect Profiler

Fig. 7. Simulated defect profile and defect parametric profile before control tolerance improvement.

4.3 Process improvement

We decide that a control standard deviation for silica of 0
is impractical and instead try a 50% reduction to a stan-
dard deviation of 0.1. Running the Monte Carlo simulation
with this change we get an estimated overall defect rate
of 11.44%, which is a very useful improvement.

The updated defect parametric profile now shows the
next biggest reduction in overall defect rate can be ob-
tained by reducing the standard deviation of sulfur. Re-
ducing this by 50% from 0.2 to 0.1 gives a predicted overall
defect rate from Monte Carlo simulation of 6.22% as indi-
cated in Figure 9.

The revised defect parametric profile in Figure 9 shows
the next biggest reduction in overall defect rate can be ob-
tained by reducing the standard deviation of silane. Re-
ducing this by 50% from 4 to 2 gives a predicted overall
defect rate from Monte Carlo simulation of 1.06% as indi-
cated in Figure 10.

Of course, this is not the best we can get from the pro-
cess. The defect parametric profile in Figure 10 indicates
that further reduction in overall defect rate is possible
by reducing the standard deviation of silica. We could
continue iterating this way until we achieve the desired

Table 5. Results comparison.

Before After
Silica SD 0.2 0.1
Silane SD 4 2
Sulfur SD 0.2 0.1

All defect rate 27.38% 1.06%

balance between the cost of increased factor control vs.
defect reduction benefit. Additional reductions in defect
rates could be obtained by targeting the random varia-
tion of 20.5 in elongation. If we could identify additional
factors that are responsible for a large proportion of this
variation then controlling these so far unidentified factors
in a similar way to Silica, Silane, and Sulfur might provide
a more cost effective way of further defect reduction.

4.4 Complete results

The different control tolerances for each factor are sum-
marised in Table 5, with the total estimated defect rate
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Fig. 8. Simulated prediction profiler after first iteration of control tolerance improvement.
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Defect Profiler 

Defect Parametric Profile 
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Fig. 9. Simulated prediction profiler after second iteration of control tolerance improvement.
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Fig. 10. Simulated prediction profiler after third iteration of control tolerance improvement.
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before and after control tolerance improvement in the key
factors.

5 Conclusion

As a whole, classic DOE is the investigation of how the
centrality of process performance can be impacted by
controlling the target of each input variable. Tolerance
analysis is the investigation of how the dispersion of
process performance can be impacted by controlling both
target and variability of each input variable. Essentially,
these two methodologies are not contradictory, and can be
highly complementary with visual approaches to tolerance
analysis. In most cases, tolerance analysis is implemented
in the phase of optimization during a classic DOE project.
Visual tolerance analysis, helps build a communication

bridge between two distinct domains – statistics and en-
gineering by visualization – which is used to aid the un-
derstanding of engineering issues without the need for an
extensive background in statistical methods. We believe
such an approach speeds informed engineering decisions
to help deliver higher quality at potentially lower cost.
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