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Testing capability indices for manufacturing processes
with asymmetric tolerance limits and measurement errors
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Abstract. Most research works related to process capability indices assume no gauge measurement errors.
However, such an assumption inadequately reflects real situations even when advanced measuring instru-
ments are employed. If we do not take into account these errors, conclusions drawn from process capability
are therefore unreliable. In this paper we study the sampling distribution of capability indices C′′

p (u, v) in
the presence of measurements errors, and when small subsamples data are collected from past “in-control”.
We show that using a critical value without taking into account these errors, severely underestimates the
α-risk which causes a less accurate testing capacity. To improve the results we suggest the use of an adjusted
critical value, and we give a Maple program to get it. An example in a nougat manufactory is presented
to illustrate this approach.
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1 Introduction

Process capability indices, which provide numerical mea-
sures on whether a process meets the capability require-
ment preset in the factory, have been widely applied to the
industry for evaluating manufacturing performance. Re-
cent research in numerous articles and several books such
as Kotz and Johnson [1], Bothe [2], Kotz and Lovelace [3],
or Pearn and Kotz [4] have focussed on the study of these
capability indices. The original process capability index
is Cp, which is designed to provide a measure of poten-
tial ability to meet requirements. The major weakness of
this index lies in the fact that it does not consider the
mean of the process. Kane [5] considered the Cpk index
in order to show the influence of a shift of the process
mean on the ability of the process to produce products
within the tolerance values. The Cpm index suggested by
Chan et al. [6] involves the variation of production items
with respect to the target value and the tolerance lim-
its that are preset in the factory. Combining the advan-
tages of these previous indices, Pearn et al. [7] introduced
the Cpmk index. For a process with lower and upper tol-
erance limits LSL and USL, and a target T set to the
midpoint m = (LSL + USL)/2 of the tolerance interval,
Vännman [8] constructed a unified superstructure for the
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four previous basic indices which can be defined as

Cp(u, v) =
d − u|μ − m|

3
√

σ2 + v (μ − T )2
,

where d = (USL−LSL)/2 is the half-length of the toler-
ance interval, μ is the mean, σ is the standard deviation,
and u and v are two non-negative parameters. It is easy to
verify that Cp = Cp(0, 0), Cpk = Cp(1, 0), Cpm = Cp(0, 1),
and Cpmk = Cp(1, 1).

A process is said to have symmetric tolerances if the
target value T is set to the midpoint m of the tolerance
interval, that is to say T = m. Although cases with sym-
metric tolerances are common in practical situations, cases
with asymmetric tolerances often occur in manufacturing
industry. In general asymmetric tolerances reflect that de-
viations from the target are less tolerable in one direction
than in the other. Nevertheless, asymmetric tolerances can
also arise in those situations where the tolerances are sym-
metric to begin with, but the process distribution follow-
ing a non-normal distribution, the data are transformed to
achieve approximate normality. If indices Cp(u, v) are well
adapted to the case of symmetrical tolerances, they have
some undesirable properties when the tolerances are asym-
metrical, T �= m (see Boyles [9]). To overcome the prob-
lems with asymmetric tolerances, and to generalize the
family Cp(u, v) to the case T �= m, Chen and Pearn [10]
suggested using the family

C′′
p (u, v) =

d∗ − uA∗

3
√

σ2 + vA2
, (1)
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where A = max{d(μ − T )/Du, d(T − μ)/Dl}, A∗ =
max{d∗(μ − T )/Du, d∗(T − μ)/Dl}, Du = USL −
T, Dl = T − LSL, and d∗ = min{Du, Dl}. Grau [11]
suggests choosing parameters u and v according to the
importance the user attaches to the process yield, or to
the process centring, which are the most important crite-
ria to measure the process performance.

In practice, process capability indices are unknown and
are estimated from data obtained from samples of man-
ufactured items. Therefore, a certain amount of uncer-
tainty, due to the sampling error, is necessarily present
in the evaluation of the process performance. A further
source of uncertainty is given by the measurements er-
rors even with highly advanced measuring instruments.
Montgomery and Runger [12,13] pointed out that quality
of the collected data on the process characteristics mostly
relies on the gauge accuracy. Levinson [14] and Mittag [15]
were the first to quantify the percentage error on process
capability indices evaluation in the presence of measure-
ment errors. Bordignon and Scagliarini [16–18] study the
statistical properties of the estimators of Cp, Cpk, and
Cpm in the case of measurement errors. For the Cp, Cpk,
CPU , CPL, Cpm and Cpmk indices, Pearn and Liao [19–21],
Pearn et al. [22], Hsu et al. [23] present some statistical
properties and establish reliable lower confidence bounds
and reliable critical values to estimate and test the process
capability with gauge measurements errors.

The purpose of this paper is to construct a critical
value to test whether a process is capable when gauge
measurement errors are present. This article is organized
as follows. In Section 2, for processes with symmetrical or
asymmetrical tolerance limits, we quickly report the main
results concerning the effects of gauge measurement errors
on theoretical capability indices. In Section 3 we give the
sampling distribution of capability indices in the presence
of measurements errors, and when small subsamples data
are collected from past “in-control”. Sections 4 and 5 give
critical values and adjusted critical values to test process
capability when gauge measurement error is present. Fi-
nally, a real example is presented in the last section.

2 The index C′′
p (u, v) and the gauge

measurement errors

Suppose that the gauge measurement errors can be de-
scribed as a random variable M � N(0, σ2

M ). Montgomery
and Runger [12] expressed the gauge capability as

λ =
6σM

USL − LSL
.

In this paper, the gauge capability provided by the gauge
manufacturing factory is assumed to be known. Suppose
that X � N(μ, σ2) represents the relevant quality char-
acteristic of the manufacturing process. In practice the
observed variable G (with gauge measurement errors) is
measured rather than the true variable X . It is further
assumed that X and M are additively linked according to

G = X + M and that X and M are stochastically inde-
pendent. Then we have G� N(μ, σ2

G = σ2 + σ2
M ) and the

empirical process capability index C′′G
p (u, v) is obtained

by formula (1) after substituting σG for σ.

C′′G
p (u, v) =

d∗ − uA∗

3
√

σ2
G + vA2

. (2)

Obviously if σM = 0, then the empirical process capabil-
ity C′′G

p (u, v) reduces to the basic index C′′
p (u, v). Since

the variation of the observed data is larger than the vari-
ation of the original data, the denominator of the index
C′′G

p (u, v) becomes larger and we would understate the
true capability of the process if the empirical data G are
used.

Let δ = (T − m)/d be the quantity that allows locat-
ing the position of T in the tolerance interval. We have
d/Du = (1 − δ)−1, d/Dl = (1 + δ)−1, and d∗/d = 1 − |δ|.
Assume that Cp = Cp(0, 0) and C′′

p = C′′
p (0, 0). Since

λC′′
p /(1 − |δ|) = λCp = σM/σ, the relationship between

the true process capability, C′′
p (u, v), and the empirical

process capability, C′′G
p (u, v), can be expressed as

C′′G
p (u, v) =

√
1 + vξ∗2√

1 + λ2C′′2
p /(1 − |δ|)2 + vξ∗2

C′′
p (u, v), (3)

where ξ∗ = max((1 − δ)−1ξ, −(1 + δ)−1ξ) and ξ =
(μ− T )/σ. It is clear that the ratio C′′G

p (u, v)/C′′
p (u, v) is

decreasing function of λ and C′′
p . Therefore the measure-

ments errors underestimate the true theoretical capability
of the process, especially when the potential capability C′′

p

is large. However, the theoretical capability is unknown
and is estimated from sample data. Thus, in the following
sections we deal with the effects of measurement errors on
the performance of estimated capability indices.

3 Sampling distribution of Ĉ′′G
p (u, v)

A common practice of the process capability estimation
in the manufacturing industry is to first implement a
routine-based data collection program for monitoring the
process stability. In order to analyze the past “in con-
trol” data, r subgroups with variable sample sizes ni,
(Xi1, Xi2, . . . , Xini), are selected randomly from a sta-
ble process following a normal distribution N(μ, σ2). Let

X̄i =
∑ni

j=1 Xij/ni and Si =
[
n−1

i

∑ni

j=1 (Xij − X̄i)2
]1/2

be the ith sample mean and the sample standard devia-
tion, respectively, and N =

∑r
i=1 ni the total number of

observations. We consider the following natural estimator
of C′′

p (u, v) defined as

Ĉ′′
p (u, v) =

d∗ − uÂ∗

3
√

S2 + vÂ2
,

where Â = max{(1 − δ)−1 ( ¯̄X − T ), (1 + δ)−1(T − ¯̄X)},
Â∗ = (d∗/d)Â = (1 − |δ|)Â, ¯̄X =

∑r
i=1 niX̄i/N , and
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ξ∗ =

−C′′
p u(1 − |δ|)/3 +

√(
C′′

p

)2
(u(1 − |δ|)/3)2 +

((
C′′

p

)2 − c2
) (

vc2 − (u(1 − |δ|)/3)2
)

vc2 − (u(1 − |δ|)/3)2
.

S2 =
∑r

i=1 niS
2
i /N . We define K = NS2/σ2, Z = N1/2

( ¯̄X − T )/σ, and Y = [max{(1 − δ)−1Z,−(1 + δ)−1Z}]2.
Then the estimator Ĉ′′

p (u, v) can be rewritten as

Ĉ′′
p (u, v) =

3
√

NC′′
p − (1 − |δ|)u√Y

3
√

K + vY
.

Under the assumption of normality, K is distributed as
χ2

N−r, an ordinary central Chi-square distribution with
N − r degree of freedom, Z is distributed as N(

√
Nξ, 1)

and Y is distributed as χ2
1(Nξ2, (1 − δ)−1, (1 + δ)−1),

an unbalanced non-central chi-square distribution with
one degree of freedom and noncentrality parameter Nξ2

(Grau [24]). Applying the same technique used in Pearn
et al. [25] to obtain the cumulative distribution of Ĉ′′

pmk =
Ĉ′′

p (1, 1), for (u, v) �= (0, 0) we have

FĈ′′
p (u,v)(x) = 1 −

∫ K(x)

0

H(x, t)dt, for x > 0 (4)

where K(x) = b
√

N/((1 − |δ|)u + 3x
√

v), b = 3C′′
p ,

H(x, t) = FK(( b
√

N−(1−|δ|)ut
3x )2 − vt2)fY (t), with

FK(x) the cumulative distribution of K, fY (t) =
(1 − δ)φ

(
(1 − δ)t −√

Nξ
)

+ (1 + δ)φ((1 + δ)t +
√

Nξ),
and φ(x) the probability density of the standard normal
distribution N(0,1).

When there are gauge measurement errors, variable G
is measured rather than the true variable X. r subgroups
(Gi1, Gi2, . . ., Gini) are selected randomly from a stable
process following a normal distribution N(μ, σ2

G). We de-
note Ḡi =

∑ni

j=1 Gij/ni, SGi = [n−1
i

∑ni

j=1(Gij − Ḡi)2]1/2,
ξG = (μ− T )/σG, ξ∗G = max((1 − δ)−1ξG, −(1 + δ)−1ξG),
and consider the following natural estimator of C′′G

p (u, v)
defined as

Ĉ′′G
p (u, v) =

d∗ − uÂ∗
G

3
√

S2
G + vÂ2

G

,

where ÂG = max{(1 − δ)−1( ¯̄G − T ), (1 + δ)−1(T − ¯̄G)},
Â∗

G = (d∗/d)ÂG = (1 − |δ|)ÂG, ¯̄G =
∑r

i=1 niḠi/N , and
S2

G =
∑r

i=1 niS
2
Gi

/N . Thus the cumulative distribution of
Ĉ′′G

p (u, v) is

FĈ′′G
p (u,v)(x) = 1−

∫ KG(x)

0

HG(x, t)dt, for x > 0, (5)

where KG(x) = bG

√
N/((1 − |δ|)u + 3x

√
v),

bG = 3C′′G
p with C′′G

p = C′′G
p (0, 0), HG(x, y) =

FK

((
bG

√
N−(1−|δ|)ut

3x

)2

− vt2
)

fG(t), and fG(t) =

(1 − δ)φ((1 − δ)t −√
NξG) + (1 + δ)φ((1 + δ)t +

√
NξG).

4 Capability testing based on Ĉ′′G
p (u, v)

To determine whether a given process meets the preset
capability requirement, we could consider the following
statistical hypotheses testing:

– H0 : C′′
p (u, v) � c Process is not capable;

– H1 : C′′
p (u, v) > c Process is capable;

where c is the required process capability. If the calcu-
lated process capability ĉ′′p(u, v) is greater than the critical
value c0, we reject the null hypothesis and conclude that
the process is capable with error α, which is the chance
of incorrectly concluding an incapable process as capable.
Given values of c and α, from (4) the critical value c0 can
be determined by solving the equation α = P (Ĉ′′

p (u, v) >

c0|C′′
p (u, v) = c) =

∫K(c0)

0
H(c0, t)dt, where from (A.6) in

Appendix A, b = 3C′′
p = 3

√
1 + vξ∗2c+u(1−|δ|)ξ∗. How-

ever, since the process parameters μ and σ are unknown,
parameters ξ and therefore ξ∗ are unknown. For the par-
ticular cases Cpk, Cpm, and Cpmk, Pearn and Lin [26], Lin
and Pearn [27], Hsu et al. [23], performed extensive calcu-
lations to obtain the maximum value of the critical value
and showed that its maximum is obtained for the values
of ξ equal respectively to 1, 0, and 0.5. Then they used
those previous values in order to eliminate the necessity
to estimate ξ. It is not possible to use the same method
for any (u, v) pair, thus in the previous equations, we re-
place ξ and ξ∗ by the observation of the natural estimators
ξ̂ = (X̄ − T )/S and ξ̂∗ = max((1 − δ)−1ξ̂,−(1 + δ)−1ξ̂).
Note that we use the same symbols ξ̂ and ξ̂∗ for the esti-
mators as well as the estimations.

In the presence of measurements errors, C′′G
p (u, v)

is measured rather than the true variable C′′
p (u, v).

Thus the α-risk denoted by αG is defined as αG =
P
(
Ĉ′′G

p (u, v) > c0|C′′
p (u, v) = c

)
. Since the process capa-

bility index is estimated by using Ĉ′′G
p (u, v) instead of

Ĉ′′
p (u, v), the real capability of the process is underesti-

mated. The probability of Ĉ′′G
p (u, v) being greater than

c0 will be less important than by using Ĉ′′
p (u, v). Thus

αG, the α-risk using Ĉ′′G
p (u, v) to estimate C′′

p (u, v) is less
than α, using Ĉ′′

p (u, v) when estimating C′′
p (u, v). To illus-

trate the performance of αG versus λ, we have considered
the particular case u = 0.5, v = 1.2, δ = 0.3, c = 1 and
1.5, α = 0.05, and have plotted curves αG for various C′′

p

values. The critical value c0 is obtained from (4) where ξ
is defined from (A.2) and ξ∗ is defined from (A.15) as

See equation above.

Then from (5) we compute αG =
∫ KG(c0)

0
HG(c0, t)dt,

where C′′G
p and ξG are obtained from (A.10) and (A.12).
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Figure 1 plots αG versus λ ∈ [0, 0.5] with r = 1, N = 30,
50, 70, 100, 150 for C′′

p = c(0.5)(c+1). Note that for λ = 0,
αG = α. In Figure 1, αG decreases as λ or N increases,
and the decreasing rate is more significant with large c.

We now consider the power of the test, the
chance of correctly concluding a capable process
as capable. It can be computed as π(C′′

p (u, v)) =

P (Ĉ′′
p (u, v) > c0|C′′

p (u, v)) =
∫ K(c0)

0 H(c0, t)dt, with
from (A.6), b = 3C′′

p = 3
√

1 + vξ∗2C′′
p (u, v)+u(1−|δ|)ξ∗.

In the presence of measurements errors, the power
of the test denoted by πG is as follows πG(C′′

p (u, v)) =

P (Ĉ′′G
p (u, v) > c0|C′′

p (u, v)) =
∫ KG(c0)

0 HG(c0, t)dt. To il-
lustrate the performance of πG versus λ, we consider the
particular case u = 0.5, v = 1.2, δ = 0.3, and plot
the curves πG for various C′′

p and C′′
p (u, v) values. In

the previous equation, C′′G
p , ξ∗,ξ and ξG are obtained

from (A.10), (A.15), (A.2) and (A.12). Figure 2 plots πG

versus λ ∈ [0, 0.5] with r = 1, N = 50, α = 0.05, c = 1.00
and 1.50, C′′

p (u, v) = c(0.20)(c + 1), and C′′
p = C′′

p (u, v),
C′′

p (u, v)+0.33 and C′′
p (u, v)+0.5. In Figure 2, we see that

πG decreases as λ increases and the decreasing rate is more
significant with large c. The presence of measurements er-
rors can have a very substantial effect on πG. For instance,
for c = 1.5 and C′′

p (u, v) = 2.5, πG is approximately equal
to 1 without measurement errors and approximately equal
to 0 when λ = 0.5.

5 Adjusted critical values

As we have seen in the previous section, the α-risk
and the test power decrease with measurement errors.
The capability testing results would be misleading if
the producers do not take account of the gauge mea-
surements errors. Thus, in order to improve the test
power, we revise the critical value, denoted by cA

0 , to sat-
isfy cA

0 < c0. Let αA = P (Ĉ′′G
p (u, v) > cA

0 |C′′
p (u, v) = c)

and πA(C′′
p (u, v)) = P (Ĉ′′G

p (u, v) > cA
0 |C′′

p (u, v)), be the
α-risk and the test power using the adjusted critical
value. Since cA

0 < c0, P (Ĉ′′G
p (u, v) > cA

0 ) is greater
than P (Ĉ′′G

p (u, v) > c0), and both πA and αA in-
crease. To ensure that the α-risk is within the pre-
set magnitude, we set αA = α, and solve equation
α = P (Ĉ′′G

p (u, v) > cA
0 |C′′

p (u, v) = c) to obtain cA
0 . Thus

from (5), we must solve

α =
∫ KG(cA

0 )

0

HG(cA
0 , t)dt.

Since the process parameters μ and σG are unknown, then
ξG is also unknown. Thus the previous equation involves
the unknown parameters ξG and C′′G

p or C′′
p from (A.10).

We replace ξG by the observed value ξ̂G, and from (A.11),

C′′
p can be obtained by solving equation

C′′
p√

1 + λ2C′′2
p /(1 − |δ|)2

=

√
1 + vξ̂∗2

G

√
1 + vξ̂∗2√

1 + λ2C′′2
p /(1 − |δ|)2 + vξ̂∗2

×c + u(1 − |δ|)ξ̂∗G/3,
(6)

where ξ̂∗G and ξ̂∗ are defined from (A.3) and (A.14) as
follows

ξ̂∗G =max((1 − δ)−1ξ̂G,−(1 + δ)−1ξ̂G), (7)

and

ξ̂∗ = max

⎛
⎜⎜⎝ ξ̂G

1 − δ

√√√√√1 + λ2

⎛
⎝
√

1 + vξ̂∗2

1 − |δ| c + uξ̂∗/3

⎞
⎠

2

,

− ξ̂G

1 + δ

√√√√√1 + λ2

⎛
⎝
√

1 + vξ̂∗2

1 − |δ| c + uξ̂∗/3

⎞
⎠

2
⎞
⎟⎟⎠ .

(8)

With the adjusted critical value cA
0 , we can calculate the

test power noted down as πA. Let C′′
p1 be the value of

C′′
p the solution of equation (6). The test power can be

calculated as follows
πA(C′′

p (u, v)) = P
(
Ĉ′′G

p (u, v) > cA
0 |C′′

p (u, v), C′′
p =C′′

p1

)
=∫K1(c

A
0 )

0 H1(cA
0 , t)dt, with K1(x) = b1

√
N/((1 − |δ|)u +

3x
√

v),

b1 = 3C′′G
p =

3C′′
p1√

1 + λ2C′′2
p1 /(1 − |δ|)2

from (3),

H1(x, y) = FK

⎛
⎝
(

b1

√
N − (1 − |δ|)ut

3x

)2

− vt2

⎞
⎠ fG1(t),

fG1(t) = (1 − δ)φ ((1 − δ)t−√
NξG1) +(1 + δ) φ((1 + δ)t

+
√

NξG1), and

ξG1 =

⎧⎨
⎩

(1 − δ)ξ∗G1 if ξG1 > 0

−(1 + δ)ξ∗G1 if ξG1 < 0
from (A.4).

ξ∗1 then ξ∗G1 are obtained by substituting C′′
p1 to C′′

p

in (A.15) and (A.13). ξG1 and ξG have the same sign, but
ξG is unknown. Thus we replace ξG by the observed value
ξ̂G, and replace ξG1 by ξ̂G1 defined by

ξ̂G1 =

{
(1 − δ)ξ∗G1 if ξ̂G > 0
−(1 + δ)ξ∗G1 if ξ̂G < 0.

A Maple program is developed in Appendix B to compute
the adjusted critical value cA

0 and plot the power test.
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λ
(a)

ξ = 0

λλ 
(b)

ξ > 0 ξ < 0 

λλ 
(c)

ξ > 0 ξ < 0 

λ
(d)

ξ = 0

Fig. 1. Plots of αG versus λ with r = 1, N = 30, 50, 70, 100, 150 (top to bottom), u = 0.5, v = 1.2, δ = 0.3, α = 0.05 for
(a) c = 1, C′′

p = 1; (b) c = 1, C′′
p = 1.5; (c) c = 1, C′′

p = 2; (d) c = 1.5, C′′
p = 1.5; (e) c = 1.5, C′′

p = 2; (f) c = 1.5, C′′
p = 2.5.



66 International Journal of Metrology and Quality Engineering

λλ 
(e)

ξ > 0 ξ < 0 

λλ 
(f)

ξ > 0 ξ < 0 

Fig. 1. Continued.

Figure 3 plots πA versus λ ∈ [0, 0.5] with r = 1, N = 50,
α = 0.05, c = 1.00, 1.50, C′′

p (u, v) = c(0.20)(c + 1) and
C′′

p = C′′
p (u, v), C′′

p (u, v)+0.5. In Figure 3, πA decreases as
increases and the decreasing rate is more significant with
large c. However, if we compare Figures 2 and 3, we can
see that the powers corresponding to the adjusted critical
values cA

0 decrease more slowly. Thus the test power is
improved.

6 Example

The study we present here has been conducted within
the company Chabert and Guillot producing nougat bars
made with almonds, honey and other natural ingredients.
At the output of the production, the nougat comes in the
form of a 520 mm long block. A saw cuts this block into
40 of 13 mm bars, a weight sorter ejects the too heavy
or too light bars, which are then recycled. Sets of about
10 000 bars are then packaged. Bars weighing 200 g are
sold. For a batch to be accepted, the French legislation
requires that no bar should weigh less than 182 g, there
should not be more than 2% of bars between 182 g and
191 g, and the mean weight should be at least 200 g.
Given the legislative and financial regulations, target T
has been set at 212 g and L and U tolerances at 191 g and
230 g (values beyond which the bars are recycled). We
have d∗ = 18, and δ = 0.077. To determine the process

capability, 20 blocks have been randomly selected. Due to
a systematic deformation at the beginning and the end of
the block, only 36 bars are used to determine the mean
weight and the standard deviation of the weight of a bar.
The data collected are presented in Table 1. Histogram
plot shows that the collected data follow the normal dis-
tribution and the Shapiro-Wilk test is applied to further
justify the assumption.

To choose an index C′′
p (u, v), Grau [11] suggests that

it should be defined so that the process cannot be claimed
as capable when the mean deviation and the proportion of
non-conforming exceed the maximum limits. On the other
hand, in order to have an easily interpretable measure, the
process is said capable when C′′

p (u, v) is higher than or
equal to 1. For the firm, the process cannot be considered
capable if the mean is less than 200 g, that is to say if the
mean moves away from more than K = (T − μ)Dl = 57%
of the distance between the target and the lower limit.
Using the results Grau [11] obtained, for u and v values
defined with a precision of 0.1, Table 2 lists the pairs which
get as close as possible to this requirement. This table also
shows the maximum proportion M of non-conforming bars
when C′′

p (u, v) = 1. Given the annual costs of excessive
dosage, the company has decided to use the C′′

p (0.8, 0.1)
index.

To determine whether the process is capable with a
gauge capability λ equal to 0.12 provided by a R&R
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Fig. 2. Plots of πG versus λ with u = 0.5, v = 1.2, δ = 0.3, r = 1, N = 50, α = 0.05, C′′
p (u, v) = c (0.20)(c + 1) (bottom to

top) for (a) c = 1 and C′′
p = C′′

p (u, v); (b) c = 1 and C′′
p = C′′

p (u, v) + 0.33; (c) c = 1 and C′′
p = C′′

p (u, v) + 0.5; (d) c = 1.5 and
C′′

p = C′′
p (u, v); (e) c = 1.5 and C′′

p = C′′
p (u, v) + 0.33; (f) c = 1.5 and C′′

p = C′′
p (u, v) + 0.5.
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Fig. 2. Continued.

Table 1. Means and standard deviations of the 20 subsamples.

Sample number 1 2 3 4 5 6 7

x̄i 208.506 210.116 208.797 209.814 210.463 209.562 209.897

si 4.712 3.648 3.264 3.437 4.418 4.518 4.225

Sample number 8 9 10 11 12 13 14

x̄i 209.553 209.286 209.577 210.851 210.168 211.011 211.018

si 4.632 4.825 4.654 4.365 4.153 4.419 5.170

Sample number 15 16 17 18 19 20

x̄i 209.464 210.554 209.582 209.776 211.002 210.882

si 4.709 4.695 4.258 4.943 4.834 3.946

Table 2. Pairs (u, v) for which K is roughly equal to 57% when C′′
p (u, v) = 1, and M the maximum percentage of non-

conforming.

(u, v) (0, 0.3) (0.1, 0.3) (0.3, 0.2) (0.4, 0.2) (0.7, 0.1) (0.8, 0.1)

K 56% 53% 57% 54% 58% 55%

M in ppm 6532 4821 6127 3143 2057 1628

analysis, we determine that c = 1 and α = 0.05. Then,
based on the sample data of N = 720 observations, we
obtain ¯̄G = 209.994, SG = 4.418, ξ̂G = −0.454 and
ĉ′′Gp (0.8, 0.1) = 1.282. From the Maple program in Ap-
pendix B, we obtain the critical value cA

0 = 1.052. Since
ĉ′′Gp (0.5, 0.1) > cA

0 , we can conclude that the process is ca-
pable. We also see that if we ignore the measurements er-
rors, the critical value may be calculated as c0 = 1.063. So
if another sample gives ¯̄G = 209.590 and SG = 5.307, we

always have ξ̂G = −0.454, thus cA
0 = 1.052 and c0 = 1.063.

Since ĉ′′Gp (0.8, 0.1) = 1.056, we conclude that the process
is capable, but we cannot draw the same conclusion if we
ignore the measurement errors.

7 Conclusion

In this work we have been concerned with the problem
of gauge measurement errors when dealing with process
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Fig. 3. Plots of πA versus with u = 0.5, v = 1.2, δ = 0.3, r = 1, N = 50, α = 0.05, C′′
p (u, v) = c (0.20)(c + 1) (bottom to top)

for (a) c = 1 and C′′
p = C′′

p (u, v); (b) c = 1 and C′′
p = C′′

p (u, v) + 0.33; (c) c = 1 and C′′
p = C′′

p (u, v) + 0.5; (d) c = 1.5 and
C′′

p = C′′
p (u, v); (e) c = 1.5 and C′′

p = C′′
p (u, v) + 0.33; (f) c = 1.5 and C′′

p = C′′
p (u, v) + 0.5.
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Fig. 3. Continued.

capability indices for symmetric or asymmetric tolerances.
Gauge measurement errors have a significant impact on
the estimation of a process capability. When small sub-
samples data are collected from past “in-control”, the
probability distribution of the estimators of the process
capability C′′

p (u, v) and the process capability with gauge
measurement errors C′′G

p (u, v) has been investigated to ob-
tain critical values and power test. The estimator evaluat-
ing the capability by using the sample data contaminated
with gauge measurement errors severely underestimates
the α-risk, resulting in a smaller testing power. We sug-
gest an adjusted critical value to improve the accuracy of
the capability assessment. For practical purpose we give a
Maple program helpful to the users for their factory ap-
plications. Finally a real example in a company producing
nougat is used to assess the interest of the approach.

Appendix A

– We have

ξ∗ = max((1 − δ)−1ξ,−(1 + δ)−1ξ) (A.1)

ξ =

{
(1 − δ)ξ∗ if ξ > 0
−(1 + δ)ξ∗ if ξ < 0

(A.2)

ξ∗G = max((1 − δ)−1ξG,−(1 + δ)−1ξG) (A.3)

ξG =

{
(1 − δ)ξ∗G if ξG > 0
−(1 + δ)ξ∗G if ξG < 0

(A.4)

– Since Cp = Cp(0, 0) and C′′
p = C′′

p (0, 0), we have

Cp = C′′
p /(1 − |δ|). (A.5)

– Since ξ∗ = A/σ and A∗ = (1− |δ|)A, from (1) we have

C′′
p (u, v) = C′′

p −uA∗/(3σ)√
1+vA2/σ2

= C′′
p −u(1−|δ|)ξ∗/3√

1+vξ∗2
, thus

C′′
p =

√
1 + vξ∗2C′′

p (u, v) + u(1 − |δ|)ξ∗/3. (A.6)

– In the same manner, from (2) we have

C′′G
p =

√
1 + vξ∗2

G C′′G
p (u, v) + u(1 − |δ|)ξ∗G/3. (A.7)

– From (A.5) and (A.6) we have

Cp =
√

1 + vξ∗2C′′
p (u, v)/(1 − |δ|) + uξ∗/3. (A.8)

– From (A.7) and (3), we have

C′′G
p =

√
1 + vξ∗2

G

√
1 + vξ∗2√

1 + λ2C′′2
p /(1 − |δ|)2 + vξ∗2

×C′′
p (u, v) + u(1 − |δ|)ξ∗G/3. (A.9)

– Since C′′G
p = C′′G

p (0, 0), from (3) we have

C′′G
p = C′′

p /
√

1 + λ2C′′2
p /(1 − |δ|)2. (A.10)
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ξ∗ =
−C0u(1 − |δ|)/3 ±

√
C2
(
v (C2

0 − C2) + (u(1 − |δ|)/3)2
)

vC2 − (u(1 − |δ|)/3)2

=
−C0u(1 − |δ|)/3 ±

√
C2

0 (u(1 − |δ|)/3)2 + (C2
0 − C2)

(
vC2 − (u(1 − |δ|)/3)2

)
vC2 − (u(1 − |δ|)/3)2

=
−a ±√

a2 + αb

b
,

– From (A.10) and (A.9), we have

C′′
p√

1 + λ2C′′2
p /(1 − |δ|)2

=

√
1 + vξ∗2

G

√
1 + vξ∗2√

1 + λ2C′′2
p /(1 − |δ|)2 + vξ∗2

C′′
p (u, v)

+ u(1 − |δ|)ξ∗G/3. (A.11)

– Since ξ = (μ − T )/σ and ξG = (μ − T )/σG,
we have ξG = ξσ/σG = ξσ/

√
σ2 + σ2

M =

ξ/
√

1 + σ2
M/σ2 = ξ/

√
1 + λ2C2

p , and from (A.5) we
have

ξG = ξ/
√

1 + λ2C′′2
p /(1 − |δ|)2. (A.12)

– From (A.3), (A.12) and (A.1), we have

ξ∗G = ξ∗/
√

1 + λ2C′′2
p /(1 − |δ|)2. (A.13)

– From (A.1), (A.12), (A.5) and (A.8), we have

ξ∗=max

⎛
⎜⎝ ξG

1−δ

√√√√1+λ2

(√
1 + vξ∗2

1 − |δ| C′′
p (u, v)+uξ∗/3

)2

,

− ξG

1+δ

√√√√1+λ2

(√
1+vξ∗2

1−|δ| C′′
p(u, v)+uξ∗/3

)2
⎞
⎟⎠ . (A.14)

– We have C′′
p (u, v) = d∗−uA∗

3
√

σ2+vA2 = C′′
p −uA∗/(3σ)√

1+vA2/σ2
=

C′′
p −u(1−|δ|)ξ∗/3√

1+vξ∗2

⇔
{(

C′′
p (u, v)

)2 (1 + vξ∗2) =
(
C′′

p − uξ∗(1 − |δ|)/3
)2 (a)

ξ∗ < 3C′′
p /(u(1 − |δ|)) (b)

Assume that C = C′′
p (u, v) and C0 = C′′

p .

(a) ⇔ C2 + vC2ξ∗2 = C2
0 + ξ∗2 (u(1 − |δ|)/3)2

− 2C0uξ∗(1 − |δ|)/3

⇔
(
vC2 − (u(1 − |δ|)/3)2

)
ξ∗2 + 2C0uξ∗(1 − |δ|)/3

+C2 − C2
0 = 0,

which is a second-degree polynomial of the variable ξ∗,
and the discriminant is

Δ′ = (C0u(1 − |δ|)/3)2 − (vC2 − (u(1 − |δ|)/3)2)
× (C2 − C2

0 )

=
(
vC2

(
C2

0 − C2
)

+ C2 (u(1 − |δ|)/3)2
)

= C2
(
v
(
C2

0 − C2
)

+ (u(1 − |δ|)/3)2
)

.

Then α = C2
0 − C2 =

(
C′′

p

)2 − (C′′
p (u, v)

)2 � 0, thus
Δ′ � 0, and

See Equation above.

with a = C0u(1−|δ|)/3 � 0 and b = vC2−(u(1 − |δ|)/3)2.
Thus the solutions of the equation are ξ∗1 = −a+

√
a2+αb
b

and ξ∗2 = −a−√
a2+αb
b . However ξ∗ = max((1−δ)−1ξ,−(1+

δ)−1ξ) must necessarily be positive or equal to zero.

(1) If C = C′′
p (u, v) > u(1−|δ|)

3
√

v
, then b > 0 and ξ∗2 < 0 is

not suitable.
(2) If 0 < C = C′′

p (u, v) < u(1−|δ|)
3
√

v
, then

0 < vC2 < (u(1 − |δ|)/3)2 ⇔ − (u(1 − |δ|)/3)2 < b < 0.
Thus

a2 − α (u(1 − |δ|)/3)2 < a2 + αb

⇔C2
0 (u(1−|δ|)/3)2−(C2

0−C2) (u(1−|δ|)/3)2 <a2+αb

⇔ C2(u(1−|δ|)/3)2 < a2 + αb ⇔ C(u(1−|δ|)/3) <
√

a2+αb ⇔−a − Cu(1−|δ|)/3
b

<
−a−√

a2+αb

b
, since b < 0

⇔ −a − Cu(1−|δ|)/3
vC2−(u(1−|δ|)/3)2

<ξ∗2 ⇔ a+Cu(1−|δ|)/3
(u(1−|δ|)/3)2− vC2

<ξ∗2

⇔ a+Cu(1−|δ|)/3

(u(1−|δ|)/3)2
<ξ∗2 ⇔ a

(u(1−|δ|)/3)2
< ξ∗2

⇔ 3
u(1−|δ|)C0 < ξ∗2

⇔ ξ∗2 > 3C′′G
p /(u(1−|δ|)), is a solution that does not check

(b), thus it is not suitable. Therefore the only possible
solution is ξ∗ = ξ∗1 = −a+

√
a2+αb
b , that is to say
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ξ∗ =

−C′′
p u(1 − |δ|)/3 +

√(
C′′

p

)2
(u(1 − |δ|)/3)2 +

((
C′′

p

)2 − (C′′
p (u, v)

)2) (
v
(
C′′

p (u, v)
)2 − (u(1 − |δ|)/3)2

)
v
(
C′′

p (u, v)
)2 − (u(1 − |δ|)/3)2

(A.15)

See equation (A.15) above.

Appendix B
When the function HG takes values that are too low, the
Maple software is sometimes unable to perform the cal-
culation of the integral of HG. This is the reason why
we limit the domain of integration [0;KG] to the domain
[K0; K1] on which HG > 10−8. This does not change the
value of the integral for the required precision.

Maple Program to compute the adjusted critical
value cA

0 and the power test.

Algorithm

Step 1. Read u, v, δ, λ, r, N , α, c, ξ̂G

Step 2. Compute ξ̂∗from (8), ξ̂∗G from (7), C′′
p from (6),

C′′G
p from (A.10).

Step 3. Compute HG, KG.
Step 4. Find the adjusted critical value cA

0 .
Step 4.1. Find K0 a lower integration bound.
Step 4.2. Find K1 an upper integration bound.
Step 5. Print the adjusted critical value.
Step 6: Plot the power test.
Maple program

restart:with(stats):

#1. Read u, v, delta, lambda, r (sub-samples number),
N (total number of observations), alpha (the alpha-risk),
c (threshold value for a capable process), kG (estimation
of (muG-T)/sigmaG), cpuvG (estimation of C′′ puvG, to
obtain the power test)
u:=0.8:v:=0.1:delta:=0.077:lambda:=0.12:
r:=20:N:=720:alpha:=0.05:c:=1:kG:=-0.454:

#2. Compute ks (estimation of xi star), kGs (estimation
of xiG star), Cp (C′′p), CpG (C′′pG)
ks:=solve(x=piecewise(kG>0,kG/(1-
delta)*sqrt(1+lambdaˆ2*(sqrt(1+v*xˆ2)/
(1-abs(delta))*c+u*x/3)ˆ2),-
kG/(1+delta)*sqrt(1+lambdaˆ2*(sqrt(1+v*xˆ2)/(1-
abs(delta))*c+u*x/3)ˆ2)),x):
kGs:=max(kG/(1-delta),-kG/(1+delta)):
Cp:=fsolve(x/sqrt(1+lambdaˆ2*xˆ2/(1-abs(delta))ˆ2)=
sqrt(1+v*kGsˆ2)*sqrt(1
+v*ksˆ2)*c/sqrt(1+lambdaˆ2*xˆ2/(1-abs(delta))ˆ2
+v*ksˆ2)+u*(1-abs(delta))*kGs/3,x=0..10):
CpG:=Cp/sqrt(1+lambdaˆ2*Cpˆ2/(1-abs(delta))ˆ2):

#3. Compute H (HG) and K (KG)
F:=(c0,t)->stats[statevalf,cdf,chisquare[N-
r]]((3*CpG*sqrt(N)-(1-abs(delta))*u*t)ˆ2/9/c0ˆ2-
v*tˆ2):

f:=t->(1-delta)*stats[statevalf,pdf,normald]((1-delta)*t-
kG*Nˆ.5)+(1+delta)
*stats[statevalf,pdf,normald]((1+delta)*t+kG*Nˆ.5):
H:=(c0,t)->F(c0,t)*f(t):
K:=3*CpG*sqrt(N)/((1-abs(delta))*u+3*c0*sqrt(v)):

#4. Compute c0 (c0A) the adjusted critical value
k1:=0:k3:=5.9:
for i from 1 to 100
do k2:=(k1+k3)/2:c0:=evalf(k2):
#4.1. Find K0, lower integration bound

K0:=0:z1:=evalf(H(c0,K0)):
if z1<1e-8 then for j from 1 to trunc(K)
do z1:=evalf(H(c0,j));
if z1>1e-8 then for h from j-0.9 by 0.1 to j
do z1:=evalf(H(c0,h));
if z1>1e-8 then K0:=h-0.1:break fi:
od:
break fi:
od:
fi:

#4.2. Find K1, upper integration bound
K1:=evalf(K)-0.00001: z2:=evalf(H(c0,K1)):
if z2<1e-8 then for j from K1 by -1 to 0
do z2:=evalf(H(c0,j));
if z2>1e-8 then for h from j+0.9 by -0.1 to j

do z2:=evalf(H(c0,h));
if z2>1e-8 then K1:=h+0.1:break fi:
od:

break fi:
od:
fi:
if z1<1e-8 and z2<1e-8 then y:=0
else y:=evalf(int(H(c0,t),

t=evalf(K0)..evalf((K0+K1)/2)))
+evalf(int(H(c0,t),t=evalf((K0+K1)/2)..evalf(K1))):
fi:
if y<alpha then k3:=k2 else k1:=k2 fi:
if abs(y-alpha)<0.00001 then break fi:
od:

#5. Print the adjusted critical value.
printf(“the adjusted critical value is %.3f
with %.2f per cent risk”,c0,100*alpha);

#6. Plot the power test
ks1:=(-Cp*u*(1-abs(delta))/3+sqrt(Cpˆ2*(u*(1-
abs(delta))/3)ˆ2+(Cpˆ2-Cpuvˆ2)*(v*Cpuvˆ2
-(u*(1-abs(delta))/3)ˆ2)))/(v*Cpuvˆ2-(u*(1-
abs(delta))/3)ˆ2):
kGs1:=ks1/sqrt(1+lambdaˆ2*Cpˆ2/(1-abs(delta))ˆ2):
kG1:=piecewise(kG>0,(1-delta)*kGs1,-(1+delta)*kGs1):
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f:=t->(1-delta)*stats[statevalf,pdf,normald]((1-delta)*t-
kG1*Nˆ.5)+(1+delta)*stats[statevalf,pdf,normald]
((1+delta)*t+kG1*Nˆ.5):
pw:=c0->int(F(c0,t)*f(t),t=0..K):
plot(pw(c0),Cpuv=c..Cp-0.01,title=“test power”);
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